7^2x-3=(1/49)^x+1

Simple and best practice solution for 7^2x-3=(1/49)^x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2x-3=(1/49)^x+1 equation:



7^2x-3=(1/49)^x+1
We move all terms to the left:
7^2x-3-((1/49)^x+1)=0
Domain of the equation: 49)^x+1)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7^2x-((+1/49)^x+1)-3=0
We multiply all the terms by the denominator
7^2x*49)^x+1)-((-3*49)^x+1)+1=0
We add all the numbers together, and all the variables
7^2x*49)^x+1)-((-147)^x+1)+1=0
Wy multiply elements
343x^3-147)^x+1)+1=0
We do not support expression: x^3

See similar equations:

| -1/7x-12/35(3+2)=-3/5+36/35 | | x/3=5+12 | | d÷0.26=18.00 | | 3/1.5=2/x | | 3/1/12=2/x | | 20x=8x+1440 | | d÷26=1800 | | 5x+50=126-54x | | a÷6+3=14 | | d÷0.26=1800 | | 4x/5-4=6 | | 16x+264=39-9x | | 8/15+1/x+2=3/5 | | 10^x=1.7 | | 4x+12/2x-3=-2/3 | | 2.9y=5.22 | | M=2x-3.54 | | x/12=15/x+8 | | x/12=15/(x+8) | | (X+2)/6=(x-5)/3 | | -2(a+1)/3=2(a-3)/1 | | 1+1c=0 | | ^2-7x+3=0 | | y2+6y-27=0 | | 7^(4x)-7^(2x)-42=0 | | 94=202-6x | | 5^2x=29.8 | | (X+1)*4=(8-x)*2 | | 94=6-202x | | 6x2-13x+2=0 | | c+1=2c-10 | | X2-8x=-15 |

Equations solver categories